
The Internals
of Veilid
A New Distributed Application Framework

Christien ‘DilDog’ Rioux
Katelyn ‘Medus4’ Bowden

www.veilid.com

Veilid

www.veilid.com

What is Veilid ?

2

Veilid 3

The Veilid Mission
“Fight for the things that you care about, but do it in a way that will lead others
to join you.” - Ruth Bader Ginsburg

We exist to develop, distribute, and
maintain a privacy focused
communication platform and protocol
for the purposes of defending human
and civil rights.

www.veilid.com

Veilid 4

Others have come
before us…

Other Efforts (Check them out too!)

NOSTR - social media specific, still ‘federated’ relay vs client
Scuttlebutt.nz - social publication system, no ip privacy
Holepunch.to - similar app framework concept , no ip privacy
Not mentioned - a lot of ‘web3’ ‘dApps’ that require buying some ‘coin’

Tor
Privacy-oriented
Networking

IPFS
Distributed Data
Storage

www.veilid.com

Veilid

Veilid is an
open-source
peer-to-peer
mobile-first
networked
application
framework

5

Veilid is conceptually similar to IPFS + Tor, but faster and designed from
the ground-up to provide all services over a privately routed network.

Veilid enables development of fully-distributed applications without a
'blockchain' or a 'transactional layer' at their base.

Veilid can be included as part of user-facing applications or run as a
‘headless node’ for power users who wish to help build the network.

www.veilid.com

Veilid 6

Veilid Design Goals

Written In Rust
Memory and type-safety

Security First
UDP
TCP

Websockets

Standard Protocols
Linux, Mac, Windows

Android, iOS
and browser WASM

Runs Everywhere

No External Services
Avoid DNS

No STUN/TURN

All In Network
Strong cryptography
IP privacy is built-in

Nodes != Identity

Privacy Focused
Low Latency

High Node Churn
Switching Networks

Resilient

www.veilid.com

Veilid

www.veilid.comBuilding a community
of applications

7

Not everything
needs to be centralized

Stop being dependent
on corporate systems

Veilid

www.veilid.com

8

Networking

Nodes
All Veilid applications running veilid-core
are ‘nodes’ and they are all equal in the eyes
of the network

No nodes are ‘special’

All nodes help each other out, regardless of
the application hosting them

Nodes are only limited by the resources they
bring and the configuration of the network
they are on

Applications directly linking in veilid-core

Linux, Mac, Windows, Android, iOS, and Web Apps for Everyone
FFI and WASM Bindings for Flutter / Dart
Rust applications can directly use veilid-core
Native bindings for other languages are welcome!

Headless nodes running veilid-server

Linux, Mac and Windows for ‘power users’
Can be controlled via JSON API for simpler apps
Python development via veilid-python package
Admins and devs can use veilid-cli to control server

www.veilid.com

Protocols
Low level protocols supported by Veilid are
kept simple, to minimize complications

Everything uses framed RPC operations up
to 64KB in size

Protocol support is extensible and may add
WebRTC and other specialized protocols in
the future

DNS is only used one time during
‘bootstrap’ and not required

SSL is optional and only for HTTPS
Websockets for Veilid Webapps

UDP

Fast, unsequenced, unreliable datagrams
Chunked into MTU-sized pieces and reassembled by Veilid
Support for out-of-order delivery
No retransmission or acknowledgment

TCP

Sequenced, reliable streams
In-line framing
All the usual TCP guarantees

Websockets

Sequenced, reliable streams
Support for HTTP and HTTPS delivery
All nodes speak Websockets
Browsers can directly contact any other node on the network

www.veilid.com

11

Network Topology Every node has a 256-bit public key ‘node id’.
Nodes arrange their routing table with a ‘distance’ metric
Routing tables are ‘buckets’ like Kademlia DHT

Veilid

BOOTSTRAP

YOU! DESKTOP
APP

HEADLESS

PWA
SERVER

MOBILE APP BROWSER

[Node List]

{Find Self}

{P
in
g}

[S
ta
tu
s]

{Signal}

{Signal}
HO
LE
 P
UN
CH

INBOUND RELAY

{S
ig
na
l}

OU
TB
OU
ND

RE
LA
Y

REVERSE
CONNECT

{Signal}

www.veilid.com

12

Bootstrapping Bootstrap nodes aren’t ‘special’. Any node can bootstrap a Veilid network.
Networks can be ‘keyed’ to keep nodes off that don’t have the key.
You can join the ‘big Veilid network’ or make your own isolated network.

Veilid

Ask Bootstraps To ‘Find Self’

A single initial DNS TXT record request
returns some bootstrap nodes that are
known to exist. Those are asked to return
nodes that are ‘close’ to your own node.

Peer Minimum Refresh

Nodes in your routing table are asked to
return nodes that are near you as well.
Finding nodes close to your own is
always harder than finding nodes far
away, so we focus on that with our
requests.

Public Address Detection

Nodes are often behind various forms of
NAT. Validating one’s own public ‘Dial
Info’ is essential for publishing one’s
Node Info and answering Find Node
requests.

Network Class Detection

Determining NAT type and what
mechanisms can be used to achieve
connectivity. Direct connection techniques
like reverse connections and UDP hole
punching may be inappropriate for some
network classes.

Relay Configuration

Low-capability network classes may
require the use of Inbound or Outbound
relays in order to achieve reachability
Nodes help each other out to the best of
their ability and incur no penalty for not
being able to assist other nodes

Ping Validation

Nodes come and go, change address, and
are unreliable. Checking routing table
nodes for proof-of-life is done with
exponential backoff. Nodes are removed
from the routing table on a LIFO basis.

www.veilid.com

Veilid

www.veilid.comAll devices are welcome
and treated fairly

13

You can use the public
Veilid Network or build your own

Nodes help each other like
mutual aid for connectivity

Veilid

www.veilid.com

14

Cryptography

VLD0
Strong, appropriate, cryptography choices
are essential to the functioning of Veilid.

Veilid provides applications guarantees
about how data is handled on the wire and
at rest.

Cryptosystems were chosen that work well
together and provide a balance of speed
and cryptographic hardness

Authentication is Ed25519

Elliptic curve25519 was chosen to provide public/private key
authentication and signing capabilities

Encryption is XChaCha20-Poly1305

ChaCha20 with a 192-bit extended nonce is a fast authenticated stream
cipher with associated data (AEAD)

Key Exchange is x25519

Curve25519 has a DH function that allows nodes to generate a
symmetric key to communicate privately

Message Digest is BLAKE3

BLAKE3 is a extremely fast cryptographic hash that is highly
parallelizable and as strong as SHA3-256 and over 17 times faster

Key Derivation is Argon2

Password hash generation should be slow and resistant to GPU attacks
Argon2 was the winner of the 2015 Password Hashing Competition

www.veilid.com

Upgrading
Nothing lasts forever

And cryptography is no exception. As
computing power improves and
cryptographic attacks evolve, weaknesses in
cryptosystems are inevitable

Veilid has ensured that upgrading to newer
cryptosystems is streamlined and minimally
invasive to app developers, and handled
transparently at the node level

Multiple Routing Tables

Because changing cryptosystems changes node ids, there will be
different distance measurements between nodes, necessitating a
separate routing table per cryptosystem. We support this today.

Migration Support

Reading persisted data will automatically use the correct cryptosystem
and will default to always writing it back using the newest/best
cryptosystem. This allows for data to be easily migrated just by reading it
and writing it back to storage

Typed Keys

Cryptographic keys, signatures, and hashes are all tagged with their
cryptosystem to ensure that we know exactly how they were generated
and how they should be used and persisted

Simultaneous Cryptosystems

While transitioning cryptosystems, nodes can respond to other nodes
using either the old system or the new one, or both.

www.veilid.com

Secure Storage

Device-level secret storage APIs are
available for all platforms

Encrypted table store APIs are exposed to
applications to make safe data storage easy

Device data keys can also be password
protected

Apps never need to write anything to disk
unencrypted

Veilid

ProtectedStore
Device-level Secret Storage

MacOS / iOS Keychain
Android Keystore

Windows Protected Storage
Linux Secret Service

New Rust Crate: keyring-manager

TableStore
Encrypted Key-Value Database

SQLITE on Native
IndexedDB in Browser

Device Key can be protected
from backup dumping attacks

New Rust Crate: keyvaluedb

RecordStore
Distributed Hash Table Storage

Encrypted + Authenticated
Subkey support

LRU distributed cache
Per-key multi-writer schemas

BlockStore
Content-addressable Data Distribution

Take What You Give model
Connect and share cloud storage

Bittorrent-like sharding

“COMING SOON”

18

On The Wire Data is encrypted at rest and on the wire
Everything is authenticated and encrypted between nodes
All node information is signed

Veilid

All Protocols Same Encryption

Each low-level protocol uses the same
message and receipt encapsulation. No
protocol is special and all protocols offer
the same safety guarantees.

Everything Is Timestamped

Envelopes include timestamps and
unique nonces and reject old or replayed
messages.

Encrypted And Signed

Messages between nodes are signed by
the sender and encrypted for only the
receiver. Messages can be relayed
without decryption and authentication
covers the entire contents including
headers.

Node Information Is Signed

When a node publishes routing table
entries they are signed. No node can lie
about another node’s dial info,
capabilities, availability, or replay old
node info when newer info is available.

www.veilid.com

Veilid

www.veilid.comEverything is
end-to-end encrypted

19

All storage is
encrypted at rest

Your data is protected
even if you lose your device

Veilid

www.veilid.com

20

RPC Protocol

RPC Schema
Strong, appropriate, cryptography choices
are essential to the functioning of Veilid.

Veilid provides applications guarantees
about how data is handled on the wire and
at rest.

Cryptosystems were chosen that work well
together and provide a balance of speed
and cryptographic hardness

Schema Language is Cap’n Proto

Cap’n Proto is designed for deserialization speed and schema evolution.
Flexible and well supported in Rust

RPC fully supports Private Routing

All private routing structures are expressed in the RPC schema itself, no
magic encrypted blobs.

RPC is fully in-schema and documented

Both ‘Question/Answer’ and ‘Statement’ RPC modes are supported. All
schema fields are documented.

Schema Evolution is built-in

Fields can be added and removed with full backward and forward
compatibility. New features won’t break older Veilid nodes.

RPC Schema is cryptography-independent

As cryptosystems change, the language spoken by Veilid nodes remains
the same.

www.veilid.com

FindNodeQ
Finding Nodes from other nodes’ routing
tables is a functional primitive for Veilid
networking

A node that sends a FindNodeQ RPC
question will receive a FindNodeA RPC
answer within the allowed RPC latency

The question asks a node to find nodes
‘close’ to a key in hash space that meet
some capability criteria

The answer returns a list of nodes and their
Signed Node Info

www.veilid.com

FindNodeA
Finding Nodes from other nodes’ routing
tables is a functional primitive for Veilid
networking

A node that sends a FindNodeQ RPC
question will receive a FindNodeA RPC
answer within the allowed RPC latency

The question asks a node to find nodes
‘close’ to a key in hash space that meet
some capability criteria

The answer returns a list of nodes and their
Signed Node Info

www.veilid.com

24

Distributed Hash Table Distributed Hash Tables are a way of storing data in
records that have keys that are close to nodes in the
network

Veilid

DHT Is Just ‘Search’

It may look complicated, but all of
the DHT algorithms out there are
just ‘search’ algorithms. Finding
data that is stored on some node
somewhere out there.

Improving Search

We built a better DHT by making
both search and data locality
more relevant. Veilid
synchronizes popular data when
nodes come and go from the
network.

www.veilid.com

DHT Schema

Veilid DHT is built using GetValue and
SetValue RPC operations. Nodes can opt out
of DHT storage if they do not want to
participate.

Veilid DHT records have schemas that
define subkeys that are individually
addressable and can have multiple writers

DHT record subkeys have sequence
numbers and are eventually consistent
across multiple writes and background
synchronizations

www.veilid.com

Veilid

www.veilid.comThe DHT gives you full
control over your data

26

Our DHT is not based on a
blockchain or a coin

Popular data becomes
more available automatically

Veilid

www.veilid.com

27

Private Routing

28

Private And Safety Routes Veilid Routes are a combination of source and
destination private routing. Because no node can
trust any other node to pick the whole route, both
source and destination must participate

Veilid

Safety Route

Private Route

Compiled Route

www.veilid.com

Compiled
Routes
Private Routes are published as a ‘private
destination’ and Safety Routes are allocated
locally and combined together with a
Private Route to form a Compiled Route.

30

Secure Envelopes
Each node hop only knows about the next one
This is similar to onion routing, but assumes that the
source is fully in control of the Safety Route and the
destination is fully in control of the Private Route

Veilid

www.veilid.com

31

Toward The Future Private routing is a balance of performance and security
Applications can make use of higher node hop counts if they desire
Future private routing advancements will be transparent to users

Veilid

Per-Hop Payload Keying

Ensuring that there is nothing common
between packets at each hop will reduce
the risk of mass data collection being able
to deanonymize routes.

Elimination of Hop Counting

Currently the protocol keeps an internal
hop count that is not necessary. Efforts
should be made to ensure that individual
nodes don’t know how far along in a
route they are.

Simplify Directionality

Routes are currently bidirectional, but are
allocated directionally. We may be able to
simplify our allocation mechanism by
enforcing bidirectionality. Bidirectional
routes are faster, but directional routes
could provide more anonymity.

Hop Caching

Route hop NodeInfo could be cached to
save on-the-wire size as well as speed
things up.

Increasing Hop Count

Currently the default is one hop chosen
by the Safety Route, and one hop chosen
by the Private Route, which leads to three
hops total once compiled.

It may be important to increase hop count
to 2 for users with critical safety needs
and to protect from nation-state-level
deanonymization where appropriate.

Existing research (on Tor) suggests that
our existing hop count should be
sufficient and provide comparable
anonymity, but this should be revisited.

www.veilid.com

Veilid

www.veilid.comIP Privacy means your
location is safe too

32

Users don’t have to
do anything to use it

No IP address means no
tracking, collection, or correlation

Veilid

www.veilid.com

33

Veilid 🦀 Rust

Veilid

Veilid is written
in Rust
Crates are
published and
you can use
them today!

34

www.veilid.com

35

Power User Quick Start Just read the README.md and clone the
repository from GitLab and get started right
away!

Veilid

wget -O- https://packages.veilid.com/keys/veilid-packages-key.public | gpg --dearmor >
/usr/share/keyrings/veilid-packages-keyring.gpg

echo "deb [arch=amd64 signed-by=/usr/share/keyrings/veilid-packages-keyring.gpg]
http://packages.veilid.net/apt stable main" > /etc/apt/sources.list.d/veilid.list

yum-config-manager --add-repo https://packages.veilid.net/rpm/veilid-rpm-test-repo.repo

www.veilid.com

Veilid

www.veilid.com

36

Veilid 🐦 Flutter

Veilid

Veilid has
first-class
FFI+JS Plugin
support for
Dart/Flutter and
example code to
get you started!

37

www.veilid.com

Veilid

www.veilid.com

38

Veilid 🐍 Python

Veilid

Veilid has an
easy no-compile
way to get
started learning
the Veilid API
with Python

39

www.veilid.com

Veilid

www.veilid.com

40

How You Can Help

41

Work With Us Veilid is an open-source initiative, designed and implemented in the open.
Come join our team and contribute to its growth! Be part of this!

Veilid

Coders And Hackers

We can use more low-level programmers
and protocol experts. Platform experts. We
want this system to work well for everyone
and be a strong foundation for general
computing and application development.

Open Source + Governance

Open source projects deserve to be
managed in the open too. We’ve got an
open RFC process for our design and an
MPL-2.0 license that ensures that free
and commercial entities can contribute
safely and legally.

App Developers

You can get started writing a Veilid app
today! Got a game idea? Want to port
something from a centralized system to a
decentralized one? Let’s make this
happen!

Usability Experts

We want to make sure that Veilid and
Veilid apps are accessible to everyone.
Everyone should be able to make use of
Veilid without even realizing they’re doing
it.

www.veilid.com

42

Find Us Online!

Veilid

Twitter: @veilidnetwork

Mastodon: @veilidnetwork

Discord: veilid.com/discord

GitLab: gitlab.com/veilid

Web: www.veilid.com

See It Live
Tonight

Release Party at 8pm!

